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ECS 20 – Fall 2021 – Phillip Rogaway                     Introduction 
 
Today: 
  Introduction 

1. Opening comments 
2. Examples 

o 2.1. Counting paths 
o 2.2. Ramsey number R(3,3) 
o 2.3. At least 6 shuffles needed to shuffle a deck 

 
Announcements 
 
1. Find the course homepage & read the syllabus 
2. Get setup on Gradescope 
3. Get setup on Piazza 
4. PS1 due next Tuesday – typeset with LaTeX 
5. TAs: AJ3: Arefeh, John, Jon, Justin 
6. Phones & laptops off and in your bag  Rule 1 
7. Requested: Proper mask, properly worn. 

Requested: well-fit N95 or KN94  Rule 2 
 

Introduction 
 

1.    Opening Comments 
 
• Welcome!  Strange to be back in the classroom? It is for me. 
• Discrete (not discreet) math: deals with finite and countably infinite sets 
• A term rarely used by mathematicians, who say what they do more 

specifically. 
• Some branches mathematics that we talk about in discrete math: 

• Set theory (but not crazy-big sets) 
• Logic (basic logic, nothing too foundational) 
• Combinatorics (how to count things, how to enumerate thing)  
• Probability (but on finite or countably infinite probability spaces) 
• Graph theory (points and two-elements subset of them) 

• All of this stuff could be taught in high school or middle school. If you 
went to a really good school, maybe it was  

• I  tend to ask more of my students than other professors do 
• I never talk-down to the students 
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• I don’t follow or require any text. 
• I don’t enforce prerequisites. 
• I ask challenging HW questions.  

• Yet I am trying to become a more effective teacher for “average” 
students. Retiring soon. I would like to think of myself as having 
embodied a broad interest in students’ well being, not just the intellectual 
growth of the top of the class.  

• I am interested in you. If I don’t seem to know you as well as I should, it 
might be because I am totally face blind. Be kind and tell me who you are 
if the context doesn’t make that obvious.  

 
 
Goals: 

1. learn some standard material 
2. gain some mathematical maturity 
3. improve your ability to think creatively in a rigorous domain 
4. improve your technical writing 
5. invite introspection 

Much of what one learns in this class from struggling working out problems. 
You are going to get stuck; to have feelings that you don’t know where to 
start; might feel stupid or frustrated.  Pairs allowed this term for homeworks. 

Problem-Solving Hints: 

1. Reformulate to something equivalent 
2. Generalize 
3. Work out special cases. Small cases.  Look for patterns. 
4. Name things (e.g., introduce variables) 
5. Create tailor-made definitions 
6. Draw pictures 
7. Think recursively 
8. Adopt a playful attitude 
9.  Forget pattern-matching 
10.  But look for echoes! 
11.  Know what you know (don’t fool yourself, don’t try to fool others) 
12.  Treat the exposition as part of the problem solving  
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For further advice of this character, read George Pólya, How to Solve It. He 
describes a 4-step strategy: (1) Understand the problem; (2) Make a plan; (3) 
Carry out the plan; (4) Look-back. 
 
2. Examples 
 
2.1 Counting paths 
 
How many paths are there by which you can walk from one corner of 
downtown Davis, say the NE corner, to the opposite corner?  
 
First we need to refine the question.  Only allowed to walk on streets or 
walkways that show up on Google maps. Travel from one intersection to 
another.  Path has to be “reasonable”: traversing each street or walkway has 
to move you in the right direction, lowering your distance to your 
destination.  NE corner = 5th and F; SW corner = 1st and A 
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Key insight:  The number of paths to a vertex (a point of intersection of two 
line segments) is the number of paths to the north plus the number of paths 
to the east. The number of paths from the starting point to itself is 1. From 
this, can iteratively figure everything out quite quickly, as marked above.  
Answer: 226 paths. 
 
 
2.2. Ramsey number R(3,3)       
 
Suppose we have 6 people gathered. I claim that either three mutually know 
one another, or three mutually don’t know one another.   Assume, however 
unrealistically, that knowing is symmetric: if A knows B then B knows A. 
 
Represent people as points (vertices) and relationships between them as 
lines (edges), the line either black (if they know one another) or red (if they 
don’t). Recast in this way, we are looking at the complete graph (all pairs 
of vertices connected) on 6 vertices, with edges colored either red or black, 
and we are claiming that the graph necessarily has a monochromatic 
triangle (three mutually connected vertices, all edges of the same color).   
 
A computer scientists would pass rather quickly/effortlessly to people being 
vertices, relationships being edges. This is both the strength of computer 
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science, but also it’s weakness. Strength people we can solve real-world 
problems, often rather easily, by introduction such abstractions. Weakness 
because we forget that people and their relationships are order of magnitude 
more complex than vertices and edges, and we have passed from the one to 
the other only as a sort of temporary fiction.  If that fiction is believed too 
firmly, we actually begin to treat people as vertices in a graph.  
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So why does a 6-vertex graph with edges colored black or red have a 
monochromatic triangle.   (A 5-vertext graph might not.) (Find some 
monochromatic triangles in the graph above.) 
 
 
Choose one vertex, say vertex 0, and inspect all of its 5 neighbors:  

0 1

2
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Vertex 1 is connected to these five neighbors with red or with black edges.  
Either 3 or more of these edges are red OR 3 or more of these edges are 
black – otherwise, vertex 0 wouldn’t be connected to five neighbors, but 4 or 
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fewer.  Lets suppose, as in the picture, that 3 or more of 0’s neighbors are 
joined to it on red edges.  If any of these neighbors are joined by a red edge, 
then we are done: we have found a monochromatic triangle.  Otherwise, all 
three of these neighbors are connected to one another by black edges, in 
which case we are done: we have a black triangle.  The case with three 
neighbors connected by black edges is analogous.  
 
Not true for 5: 
 

 
 
 
 
GENERALIZING: 
  
Let R(n,n) = the minimum number of vertices such that the complete graph 
on n vertices with edges colored two colors must have a  monochromatic n-
clique.    Note:  not obvious that such a number exists—that too must be 
proven.  That such a number does exist is Ramsey’s Theorem. Perhaps we 
will prove it later in the term. 
 
R(3,3) = 6 
R(4,4) = 18 
R(5,5) is unknown!    We do know that  43 ≤ R(5,5) ≤ 48 
 
“[Paul] Erdős asks us to imagine an alien force, vastly more powerful than 
us, landing on Earth and demanding the value of R(5, 5) or they will destroy 
our planet. In that case, he claims, we should marshal all our computers and 
all our mathematicians and attempt to find the value. But suppose, instead, 
that they ask for R(6, 6). In that case, he believes, we should attempt to 
destroy the aliens.”     [Joel Spencer] 
 

https://en.wikipedia.org/wiki/Ramsey%27s_theorem


8 
 

 
2.3: At least 6 shuffles needed to shuffle a decks                       
 
In 1992, Dave Bayer and Persi Diaconis showed that after seven random 
riffle shuffles of a deck of 52 cards, every configuration is nearly equally 
likely.  
 

 
In general, the authors show that ~  1.5 lg n   riffle shuffes are necessary and 
sufficient to well-shuffle a deck of n cards (in the sense of getting the total-
variation distance to drop under 1/2).  
 
We claim that 5 shuffles of a deck of 52 cards is not enough to randomize 
the cards. 
 
Here by shuffles I mean the usual “riffle shuffle.”  Prof. Rogaway 
demonstrates one with an imaginary deck. 
 
Assume a starting sequence of  
 
 1, 2, 3, …, 51, 52 
 
Even though we won’t define what it means to randomize the cards, clearly 
a deck cannot be well randomized unless you can get any resulting sequence 
of cards starting from any given initial sequence. For example, you should 
be able to shuffle the sequence above and end up with: 
 
 52, 51, …, 3, 2, 1 
 
We are going to show that 5 shuffles of this deck will never transform the 
specified starting sequence to the specified final sequence.  So it can’t do a 
good job of mixing the deck. 
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From http://www.math.hmc.edu/funfacts/ffiles/20001.4-6.shtml (now 
defunct):   

An amazing fact is that five random riffle shuffles are not enough to 
randomize a deck of cards, because not only is every configuration not 
nearly equally likely, there are in fact some configurations which are not 
reachable in 5 shuffles! 

To see this, suppose (before shuffling) the cards in a deck are arranged in 
order from 1 to 52, top to bottom. After doing one shuffle, what kind of 
sequences are possible? A moment's reflection reveals that only 
configurations with 2 or fewer rising sequences are possible. A rising 
sequence is a maximal increasing sequential ordering of cards that appear 
in the deck (with other cards possibly interspersed) as you run through the 
cards from top to bottom. For instance, in an 8 card deck, 12345678 is the 
ordered deck and it has 1 rising sequence. After one shuffle, 

16237845 
 
is a possible configuration; note that it has 2 rising sequences (the black 
numerals form one, the red numerals form the other). Clearly the rising 
sequences are formed when the deck is cut before they are interleaved in the 
shuffle. 

So, after doing 2 shuffles, how many rising sequences can we expect? At 
most 4, since each of the 2 rising sequences from the first shuffle have a 
chance of being cut in the second shuffle. So the number of rising sequences 
can at most double during each shuffle. After doing 5 shuffles, there at most 
32 rising sequences. 

But the reversed deck, numbered 52 down to 1, has 52 rising sequences! 
Therefore the reversed deck cannot be obtained in 5 random riffle shuffles! 

Max number of rising sequences after  

0 shuffles:   1 
1 shuffles:   2 
2 shuffles:   4 
3 shuffles:   8 
4 shuffles: 16 

http://www.math.hmc.edu/funfacts/ffiles/20001.4-6.shtml
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5 shuffles: 32   We still can’t have reached anything with more than 32 
rising sequences 
6 shuffles: 64 
 


